Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Molecules ; 28(7)2023 Apr 02.
Article in English | MEDLINE | ID: covidwho-2294416

ABSTRACT

The purpose of this work was to prepare new isatin- and monothiomalondiamide-based indole derivatives, as well as to study the properties of the new compounds. The four-component reaction of 5-R-isatins (R = H, CH3), malononitrile, monothiomalonamide (3-amino-3-thioxo- propanamide) and triethylamine in hot EtOH yields a mixture of isomeric triethylammonium 6'-amino-3'-(aminocarbonyl)-5'-cyano-2-oxo-1,2-dihydro-1'H- and 6'-amino-3'-(aminocarbonyl)- 5'-cyano-2-oxo-1,2-dihydro-3'H-spiro[indole-3,4'-pyridine]-2'-thiolates. The reactivity and structure of the products was studied. We found that oxidation of spiro[indole-3,4'-pyridine]-2'-thiolates with DMSO-HCl system produced only acidification products, diastereomeric 6'-amino-5'-cyano-5-methyl-2-oxo-2'-thioxo-1,2,2',3'-tetrahydro-1'H-spiro-[indole-3,4'-pyridine]- 3'-carboxamides, instead of the expected isothiazolopyridines. The alkylation of the prepared spiro[indole-3,4'-pyridine]-2'-thiolates upon treatment with N-aryl α-chloroacetamides and α-bromoacetophenones proceeds in a regioselective way at the sulfur atom. In the case of α-bromoacetophenones, ring-chain tautomerism was observed for the S-alkylation products. According to NMR data, the compounds consist of a mixture of stereoisomers of 2'-amino-6'-[(2-aryl-2-oxoethyl)thio]-3'-cyano-2-oxo-1'H-spiro[indoline-3,4'-pyridine]-5'-carboxamides and 5'-amino-3'-aryl-6'-cyano-3'-hydroxy-2-oxo-2',3'-dihydrospiro[indoline-3,7'-thiazolo[3,2-a]pyridine]-8'-carboxamides in various ratios. The structure of the synthesized compounds was confirmed by IR spectroscopy, HRMS, 1H and 13C DEPTQ NMR studies and the results of 2D NMR experiments (1H-13C HSQC, 1H-13C HMBC). Molecular docking studies were performed to investigate suitable binding modes of some new compounds with respect to the transcriptional regulator protein PqsR of Pseudomonas aeruginosa. The docking studies revealed that the compounds have affinity for the bacterial regulator protein PqsR of Pseudomonas aeruginosa with a binding energy in the range of -5.8 to -8.2 kcal/mol. In addition, one of the new compounds, 2'-amino-3'-cyano-5-methyl-2-oxo-6'-{[2-oxo-2-(p-tolylamino)ethyl]thio}-1'H-spiro-[indoline-3,4'-pyridine]-5'-carboxamide, showed in vitro moderate antibacterial effect against Pseudomonas aeruginosa and good antioxidant properties in a test with 1,1-diphenyl-2-picrylhydrazyl radical. Finally, three of the new compounds were recognized as moderately active herbicide safeners with respect to herbicide 2,4-D in the laboratory experiments on sunflower seedlings.


Subject(s)
Isatin , Pyridines , Molecular Docking Simulation , Indoles/pharmacology , Indoles/chemistry , Magnetic Resonance Spectroscopy
2.
Platelets ; 34(1):2131751.0, 2023.
Article in English | PubMed | ID: covidwho-2239922

ABSTRACT

Spleen tyrosine kinase (SYK) is an important regulatory molecule of signal transduction pathways involved in the pathogenesis of autoimmune diseases such as immune thrombocytopenia (ITP), and the SYK-signaling pathway has emerged as a potential target for the treatment of numerous diseases. The aim of this narrative review is to summarize the biological properties of SYK and its involvement in disease pathways, provide an update on SYK inhibitors in the treatment of ITP, and consider other potential applications. Fostamatinib, the only licensed SYK inhibitor to date, produces clinical response in ITP patients, including those who are refractory to other treatments. It appears to reduce the risk of thrombotic events and may therefore be a drug to consider for patients with an increased thrombotic risk. Encouraging results have also been obtained in the treatment of warm autoimmune hemolytic anemia. Several other SYK inhibitors have entered clinical trials for a range of indications, reflecting the ability of these drugs to affect multiple signaling pathways. SYK inhibitors have the potential to target several aspects of COVID-19 pathogenesis including thrombosis, without affecting normal hemostasis, and data from the first study of fostamatinib in COVID-19 are encouraging. It is hoped that ongoing trials in autoimmune indications other than ITP, as well as in hematological malignancies and other disorders, confirm the promise of SYK inhibitors. Immune thrombocytopenia (ITP) is an autoimmune disease that usually happens when your immune system mistakenly attacks and destroys platelets, which are cells that help blood to clot. Individuals with ITP can experience easy or excessive bruising and bleeding. Scientists have identified that an enzyme called spleen tyrosine kinase (SYK) is involved in numerous biological processes that are associated with the immune system response, inflammation, and some types of cancer in humans. Therefore, it has become a target for new drugs which inhibit the action of SYK. In this review article, the authors provide a summary of the biological properties and actions of SYK and its involvement in various diseases, discuss information about drugs that have been developed as SYK inhibitors for the treatment of ITP, and consider other potential uses for drugs that inhibit SYK. Although several drugs are being developed, the only SYK inhibitor that is currently available for the treatment of ITP is a drug called fostamatinib. In patients with ITP, including those who no longer respond to other treatments, fostamatinib has been shown to improve platelet counts and reduce bleeding events. Researchers are also currently investigating the use of drugs that inhibit SYK, including fostamatinib, for the potential treatment of other diseases associated with inflammation (e.g. rheumatoid arthritis, COVID-19), autoimmunity (e.g. warm autoimmune hemolytic anemia), and blood cancers (e.g. lymphoma, chronic lymphocytic leukemia, and acute myeloid leukemia). eng

3.
Curr Issues Mol Biol ; 45(2): 1422-1442, 2023 Feb 07.
Article in English | MEDLINE | ID: covidwho-2227294

ABSTRACT

Many biological activities of pyridine and thiazole derivatives have been reported, including antiviral activity and, more recently, as COVID-19 inhibitors. Thus, in this paper, we designed, synthesized, and characterized a novel series of N-aminothiazole-hydrazineethyl-pyridines, beginning with a N'-(1-(pyridine-3-yl)ethylidene)hydrazinecarbothiohydrazide derivative and various hydrazonoyl chlorides and phenacyl bromides. Their Schiff bases were prepared from the condensation of N-aminothiazole derivatives with 4-methoxybenzaldehyde. FTIR, MS, NMR, and elemental studies were used to identify new products. The binding energy for non-bonding interactions between the ligand (studied compounds) and receptor was determined using molecular docking against the SARS-CoV-2 main protease (PDB code: 6LU7). Finally, the best docked pose with highest binding energy (8a = -8.6 kcal/mol) was selected for further molecular dynamics (MD) simulation studies to verify the outcomes and comprehend the thermodynamic properties of the binding. Through additional in vitro and in vivo research on the newly synthesized chemicals, it is envisaged that the achieved results will represent a significant advancement in the fight against COVID-19.

4.
Molecules ; 27(11)2022 May 24.
Article in English | MEDLINE | ID: covidwho-1892922

ABSTRACT

BACKGROUND: Heterocyclic compounds and their fused analogs, which contain pharmacophore fragments such as pyridine, thiophene and pyrimidine rings, are of great interest due to their broad spectrum of biological activity. Chemical compounds containing two or more pharmacophore groups due to additional interactions with active receptor centers usually enhance biological activity and can even lead to a new type of activity. The search for new effective neurotropic drugs in the series of derivatives of heterocycles containing pharmacophore groups in organic, bioorganic and medical chemistry is a serious problem. METHODS: Modern methodology of drugs involves synthesis, physicochemical study, molecular modeling and selection of active compounds through virtual screening and experimental evaluation of the biological activity of new chimeric compounds with pharmacophore fragments. For the synthesis of new compounds, classical organic methods were used and developed. For the evaluation of neurotropic activity of new synthesized compounds, some biological methods were used according to indicators characterizing anticonvulsant, sedative and antianxiety activity as well as side effects. For docking analysis, various soft ware packages and methods were used. RESULTS: As a result of multistep reactions, 11 new, tri- and tetracyclic heterocyclic systems were obtained. The studied compounds exhibit protection against pentylenetetrazole (PTZ) seizures as well as some psychotropic effects. The biological assays evidenced that nine of the eleven studied compounds showed a high anticonvulsant activity by antagonism with pentylenetetrazole. The toxicity of the compounds is low, and they do not induce muscle relaxation in the studied doses. According to the study of psychotropic activity, it was found that the selected compounds have an activating behavior and anxiolytic effects on the "open field" and "elevated plus maze" (EPM) models. The data obtained indicate the anxiolytic (antianxiety) activity of the derivatives of tricyclic thieno[2,3-b]pyridines and tetracyclic pyridothieno[3,2-d]pyrimidin-8-ones, especially pronounced in compounds 3b-f and 4e. The studied compounds increase the latent time of first immobilization on the "forced swimming" (FS) model and exhibit antidepressant effects; compounds 3e and 3f especially exhibit these effects, similarly to diazepam. Docking studies revealed that compounds 3c and 4b bound tightly in the active site of γ-aminobutyric acid type A (GABAA) receptors with a value of the scoring function that estimates free energy of binding (∆G) at -10.0 ± 5 kcal/mol. Compound 4e showed the best affinity ((∆G) at -11.0 ± 0.54 kcal/mol) and seems to be an inhibitor of serotonin (SERT) transporter. Compounds 3c-f and 4e practically bound with the groove of T4L of 5HT_1A and blocked it completely, while the best affinity observed was in compound 3f ((∆G) at -9.3 ± 0.46 kcal/mol). CONCLUSIONS: The selected compounds have an anticonvulsant, activating behavior and anxiolytic effects and at the same time exhibit antidepressant effects.


Subject(s)
Anti-Anxiety Agents , Pentylenetetrazole , Anti-Anxiety Agents/pharmacology , Anticonvulsants/chemistry , Antidepressive Agents/pharmacology , Molecular Docking Simulation , Pentylenetetrazole/adverse effects , Pyridines/chemistry , Pyrimidines/chemistry , Receptors, GABA-A , Structure-Activity Relationship
5.
Journal of Molecular Structure ; : 132336, 2022.
Article in English | ScienceDirect | ID: covidwho-1611926

ABSTRACT

In the present study, a new series of diazenyl azo-phenol derivatives (TC-1 to TC-8) have been synthesized via diazo-coupling approach between substituted aromatic amines and phenol derivatives produced azo–phenol compounds in moderate to good yields (40-80%). The appearance of characteristic prominent peak of azo derivatives i.e. N=N peak at 1500-1400cm−1 and disappearance of NH2 stretch at 3500-3200 cm−1, presence of a broad OH stretch in the range of 3300-3000 cm−1 in FTIR spectra, while presence of OH peak in spectral range of 15-10 ppm and aromatic protons in the region of 8.0-6.0 ppm and disappearance of NH2 peak in 5.0-4.0 spectral region in 1H-NMR spectra confirms the synthesis of new diazenyl azo-phenol derivatives. Similarly, appearance of carbon attached with -N=N- group in the range of 149-144 ppm, C−OH in the range of 164-162 ppm, C−N of pyridine ring at 175 ppm, aromatic carbons at 140-108 ppm while aliphatic carbons at 21-20 ppm in 13C-NMR spectra give strong indication of synthesis of proposed compounds and HRMS also confirmed the masses of proposed structure of diazenyl azo-phenol derivatives. In case of urease inhibition potential, the in vitro results suggested that the compound TC-6 (IC50 value 0.62±0.04 µM) to be most active compared to the standard drug thiourea (IC50 value 21.44±0.78 µM), kinetic analysis revealed that TC-6 behaved as a mixed-type inhibitor with irreversible mode of action. The SAR showed the stable docked complex due to the presence of dihydroxy hydrogen atoms in TC-6 (-6.01 kcal/mol) and strong binding interactions with the active site residues of the target protein urease (3LA4). The detailed in silico analysis of the diazenyl azo-phenol derivatives (TC-1 to TC-17) against the ribosomal protein S1 (RpsA) of Mycobacterium tuberculosis (4NNI) and main protease (Mpro) of SARS-CoV-2 (6LU7) was also performed and SAR showed that among all the docked compounds, TC-6 and TC-9 showed best docked conformational poses by exhibiting strong interactions with the active site residues of the target proteins (4NNI & 6LU7) with minimum binding energy values i.e. -5.36 kcal/mol and -4.84 kcal/mol respectively. The ADME calculations showed that the synthesized ligands quietly obey rule of five without any considerable violations.

SELECTION OF CITATIONS
SEARCH DETAIL